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Scaling Exponents for Active Scalars
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We provide bounds for Dirichlet quotients and for generalized structure func-
tions for 3D active scalars and Navier-Stokes equations. These bounds put
constraints on the possible extent of anomalous scaling.

1. INTRODUCTION

A central idea of classical'u and modern(2> turbulence theories is scaling:
certain averages of the hydrodynamical variables behave like powers of
the independent variable. The basic hydrodynamic variable is the velocity
u(x, t}, a three component divergence-free vector depending on position x
and time /. The velocity obeys the incompressible Navier-Stokes equations,
a nonlocal, nonlinear system of partial differential equations. The quantities
that are asserted to possess scaling properties are obtained by taking
averages of functionals of the velocity increments
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for fixed y. Typical examples are the structure functions

for various powers of m. How to perform the proper average < • • • > is not
obvious. It would be desirable of course to have a specific and relatively
simple procedure like time or space-time average. The very emergence of
power laws from the nonlinear equations has not yet been demonstrated
analytically, simple procedures or not.
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for large m. To my knowledge, this very severe anomalous scaling has
neither been proved nor disproved for the rapid change passive scalar.
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The traditional assumptions of scaling are of the form

where the constant U is a typical velocity magnitude, L a length magnitude
and the scaling relation holds asymptotically in the limit of large Reynolds
number

Here v is the kinematic viscosity. Moreover, scaling is expected to hold for
\y\ in an inertial range that extends from a small cut-off length r/ to L. The
cut-off length is determined by the kinematic viscosity and the average
dissipation rate of kinetic energy s. The exponents Cm are proportional to
m in a Kolmogorov(1) theory:

In recent years departures from this picture have been proposed in a
variety of models (references in Ref. 2). Anomalous scaling—scaling that
does not follow simple dimensional analysis—has been associated with
intermittency, a term that usually is understood to refer to the uneven dis-
tribution in physical space of regions of high spatial gradients of the
velocity. Temporal intermittency (uneven distribution in time of high tem-
poral gradients) may also be present in these systems, and temporal and
spatial intermittency could have distinct effects. This is the main theme of
this paper.

The paper is divided in two parts. The first part (Sections 2 and 3) is
introductory and is intended to serve as a background for the subsequent
discussion; in it we will recall briefly the rapid change passive scalar model
of R. Kraichnan(3> and his equation for structure functions. The equa-
tion is derived in a rational and formal but still non-rigorous manner.
Kraichnan(4) made an ansatz regarding the dissipation that enabled him to
calculate the exponents. The ansatz can be formulated as an assumption
about certain Dirichlet quotients. One consequence of the ansatz is



In the second part of the paper we describe active scalar models and
fractional structure functions. Active scalars<5) are natural incompressible
hydrodynamical models of the full Navier-Stokes equations.'6'7) Fractional
structure functions are averages that generalize the usual structure func-
tions: their spatial and temporal homogeneities can be different. We derive
(rigorously) inequalities for appropriate Dirichlet quotients and for frac-
tional structure functions both for the three dimensional Navier-Stokes
equations and for the active scalar models. These inequalities impose
limits on the possible anomalies and imply that the asymptotic behavior
suggested by the ansatz of Kraichnan would require a specific and signifi-
cant dominance of temporal intermittency over spatial intermittency. We
conjecture that this is impossible in these deterministic and time correlated
systems; more specifically, we believe that active scalars and regular
Navier-Stokes dynamics obey

2. PASSIVE SCALARS AND THE DOUBLE
DUHAMEL FORMULA

A much studied,'8'131 model proposed by R. Kraichnan'3' is the
random partial differential equation
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for every 0 ̂  s < 1.
A main feature both of our analysis and of the traditional assumptions

regarding structure functions is that scaling extends down to a dissipation
scale. That is where the exponents are anchored, and that's where we catch
them.

where the incompressible velocity u is random, with given statistics. In this
case scaling of velocity is an input, imposed from the outset. The problem
is to determine the output—scaling exponents of the scalar structure
functions

where the meaning of ( • • • > is expectation with respect to velocity
statistics.



If the realizations of « are almost surely continuous in time, then one
could reformulate the random partial differential equation as
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where

and

This is an integral equation, the (single) Duhamel formula, used to define
mild solutions in the deterministic PDE case. Mild solutions are a useful
concept that generalizes the notion of solutions. But if the velocity is too
singular in time then the single Duhamel formula does not suffice to make
sense of solutions or to compute the higher order structure functions. This
is the case if we assume that the velocities obey

The equality holds when left and right hand side are interpreted as
measures in the variable s representing time; 5 is Dirac measure concen-
trated at 0. The positive eddy diffusivity constant D is typically much larger
than K. The correlation tensor C0 is non-dimensional. An example is given
by

The numbers a, b are non-dimensional and non-negative. The quantity (
has dimensions of length: it fixes length units. We denote

The equation for the increment



where the first four terms represent (u, u) interactions ((y, y), (y, x), (x, y)
and (x, x ) ) , the next two (u, g) interactions and the last one the pure g
(and initial data) term. More generally, one can take any function <P of one
real variable and multiply the equation for q by <t>'(5yO) to obtain
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is

We denote for simplicity q = dy6, g = dyf.
One can write the equation for q as an iterated integral equation, the

Double Duhamel Formula:

One can write a DDF for it: first one writes, using (single) Duhamel

where

and J ( x , /; y) involves all the rest. In the expression for / write again
<$>(x, 5; y) = I(x, s; y) + J(x, s; y), change the order of integration in time
and keep spatial derivatives one on the outside and the other all the way
inside. This leads to DDF for <t>. One of the relevant terms looks like this

One (formally) takes averages with respect to velocity statistics and one
uses the following fundamental rules:

(1) 0, and consequently <t> depend on the past of the velocity but not
on its future. Thus d(t) and <P(t] are independent of u(s) for s<t.

(2) Homogeneity: < ••• > commutes with spatial translation.

(3) The Stratonovich rule for stochastic integrals (midpoint in the
Riemann sum discretization of the integral).



3. SEARCHING FOR EXPONENTS

Let us seek time independent solutions. Also let us take cP even and
assume < &' > = 0. Finally, let us assume radial solutions. Then we need to
solve, for example
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The main ingredients in the DDF are random linear operators with
coefficients depending through u( •, t) ® u( •, a] on ordered times / ^ a. They
are applied to <P(q) terms that depend on earlier times. The Stratonovich
rule allows one to factor the expectation in half the product of the expecta-
tions. It is here where non-uniqueness of the model can manifest itself.

The average of the piece of the DDF we wrote above becomes for
instance

The other pieces that have velocity-velocity interactions vanish because of
the assumed spatial homogeneity. Moreover, spatial homogeneity reduces
the operator eK('~a)A to the identity. It follows that

obeys Kraichnan's equation

Note that

follows from definitions and shows that A' is a non-negative matrix. We
have taken both the initial data and the sources to be deterministic and
smooth. Natural modifications are needed for the cases they are random.
On radial functions the second operator in (1) is, for example



and we wrote £ for f(w). Now < V72) vanishes quadratically at r = 0 so we
can integrate the equation (2):
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Note that if we take

where m is an integer, then pointwise

where

and of course 8y6 is substituted for q. Thus we need to solve

where

It is natural to introduce the Dirichlet quotient

Let us now make the assumption that < !F2> is homogeneous. That means
that

the function h2m is a power,



The anomalous results would follow from a bound that grows with m at
a rate that is below m2.

Kraichnan derived the equation already in the work.(3> We presented
the DDF formulation because it is the natural integral equation formula-
tion one would use in the case of rapidly oscillating deterministic coef-
ficients. It might be also be useful for different equations. We write the
dissipation terms of the Dirichlet quotient: that is where the puzzle is. Not
only did Kraichnan derive the equation but he also went further and made
a specific ansatz regarding the dissipation14' that implies an asymptotic
behavior of Cm for large m of the type Cm ~ m. This would imply

for large m. This, to my knowledge, is still an open problem despite
vigorous research.
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Dividing by < *F2>(r) we have

This equality can hold for a range of r only if

This provides quite remarkable insight already: (6) must hold in order
to sustain any homogeneous (power law) solution. The non-dimensional
constant Cm may depend on m, d, C and on K/D. Let us assume that h2m is
as above. Then we deduce

So, in view of these considerations, a direct approach (numerical or
analytical) is to study the independence of r and dependence of m of



The vector valued kernel Jf must be divergence-free. We will assume that
the kernel is smooth away from the origin and that at the origin it may
have at most a power-law singularity of order a < d. In the case a = d we
assume that the kernel is of classical Calderon-Zygmund type.(14) The
simplest example of such an active scalar is the two dimensional quasi-
geostrophic one that has merits of its own.<6'7) In this paper we will not
restrict ourselves to two dimensions, rather we would like to emphasize the
three dimensional case. A very natural generalization of the two dimen-
sional quasigeostrophic active scalar is given by the equation of state
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4. ACTIVE SCALARS

The dissipative active scalars we are considering here are solutions
d(x, t) of equations

where xeRd represents position and ?^0 is time. The velocity u is
divergence-free,

and is determined by the scalar by a linear equation of state, for instance:

or

where Bijk is the totally anti-symmetric tensor (signum of the permutation
(1,2, 3) (-»(/,./,*)),

are the Riesz transforms and h is any given smooth function. The usual two
dimensional quasigeostrophic model is obtained for h ( x , y , z ) = z. The



consideration below apply to all models in which 9 and u are of the same
order of magnitude (theta has dimensions of velocity). In view of the fact
that these are scalar equations the maximum principle

is bounded in time. This is enough for our purpose, but it is also sufficient
in three spatial dimensions to show that the active scalar models have
smooth solutions for all time. This is why we chose them, in addition to the
Navier-Stokes equations. The question of regularity of solutions of the
three dimensional Navier-Stokes equations being open we wanted to pre-
sent our results not only for it but also for systems that we can control
analytically.

5. STRUCTURE FUNCTIONS

Before we continue we need to define the averaging procedures that
will replace taking the expectation with respect to velocity statistics. We
will take averaging procedures we have used before,115' namely long time
averages and local averages on balls of size /;:
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holds. This is a crucial advantage over (or departure from!) the Navier-
Stokes equations. The energy equation also holds

In view of the identity

straightforward use of the bound afforded by the maximum principle and
the energy equality, it follows that the "enstrophy"



where (8y(h))(x) = h(x — y) — h(x). This is the same as in Ref. 15 except
that here we conform to the physics usage and do not take the mth root.
The active scalar equation and the Navier-Stokes equations are of course
different, but both are incompressible and non-local: in the Navier-Stokes
equation the non-local effect is carried by the pressure, the active scalars
have the non-local effect in the velocity. Both the pressure in the Navier-
Stokes equation and the velocity in the active scalars are obtained by
applying Calderon-Zygmund operators to the basic variable. The average
defined above behaves well with respect to Calderon-Zygmund operators.
We recall from Ref. 15 that, if K is a Calderon-Zygmund operator then

Proposition 1. The mth structure function of Kh satisfies

with C depending on the kernel of the operator K.
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where h is some function, Bp is the ball in Rd centered at -YO and of radius
p and \Bp\ is its volume. If the systems are taken to be periodic in space
then a long time average followed by space average on the period box
works as well. For a function h we define

with C 0 t b ( s m ( h ) ) ( y ) defined by

822/90/3-4-5

and

where the weight functions a and b are arbitrary and the dependence of
Ca.m, Da<m on them is given by



holds with a constant H and all y then for every m there exist appropriate
weights a, b and a constant ym depending on m such that
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Now Ca>6(sm(/z))(j) does not differ from sm(h)(y) in what concerns
the scaling exponent: if

also holds for all y.
A few comments are needed. First, the dependence of ym on m is impor-

tant. Inspection of the proposition above (see also Ref. 15) mindful of the
change in notation) shows that

with a fixed C. For the interested reader we note that the dependence of ym

on m passes via (,m (our unknown!) but all we need is that Cm< Cm which
is trivially true. Also we note that the classical result (see Ref. 14) on
boundedness of Calderon-Zygmund operators in Lp spaces has worse
dependence

but here we have more than just Lm information in the assumption on
sm(h). Incidentally, a dependence of ym of the type (Cm)m would not
change the conclusion of the paper. Secondly, the inequality for sm(h) is
assumed to hold for all y not only in an inertial range. This is however
acceptable: if y is smaller than the viscous cut-off (the mathematically
significant part) then the physical assumption would be even more
stringent, Cm = m, better behavior. If y is larger than L then there is no
additional assumption, because the functions h we are going to consider are
bounded.

Consider the finite difference operator 6y, (6yd)(x,t) — d(x — y,t) —
6(x, t). It follows from the active scalar equation that



in the Navier-Stokes case and equals 6yf for the active scalar. The first
term in the right hand side of ( 1 1 ) looks the same as in the passive scalar
case, but of course it is significantly different. In this case Syu(x, t) and
q(x,t — 0 ; y ) are not independent: they are identical in the Navier-Stokes
equation case and linearly related in the active scalar one.

6. THE HEART OF THE MATTER

We will rearrange ( 1 1 )
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In the case of the Navier-Stokes equations the corresponding equation is

where p is the pressure. We will consider both cases simultaneously. We
denote as before by q = q(x, t; y) the increments. In the Navier-Stokes case
q is a vector. Let us denote, also as before ¥= \q\m and multiplying the
evolution equation of q by 2mqt \q\2m~2 deduce

where

where the first term on the right hand side of (12) is

the second is

(with gi = d y f — d x . ( d y p ) and respectively g = Syf) and the third is



for the active scalar. We take the average of / in the form above; we use
first a Holder inequality raising the term \q\2m~l to the 4m/2m— 1 power,
the term \Syu\ to the power 4m and the gradient term (|V«| or, respectively
\V6\) to the second power. We will use the same notation £ for the average
energy dissipation rate

We pass now to the estimate of the average of the second term in the
right hand side of (12),
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We will study the averages of the terms in the right hand side of (12). We
will keep track of the nonlocal terms and dependence of constants on ra:
it is important to note that the nonlocal terms enter only linearly in the
balance equation. We start with / and observe that

in the Navier Stokes case and

and

We obtain, in the case of the Navier-Stokes equations,

and in the active scalar case

In the active scalar case we use the equation of state for velocity and
Proposition 1 to conclude that



Assuming that the Navier-Stokes velocity is bounded
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In the case of the active scalar equation things are simple:

In the case of the Navier-Stokes equations we have the additional term
involving the pressure:

with

The piece 2mq • Syf Iql2™ 2 is estimate as // for the active scalar. We recall
that the hydrodynamic pressure is

where Rj = dx{ —/I) l/2 are the Riesz transforms. Because the operation Sy
commutes with translation it follows that

Now

where (TyUj)(x) = Uj(x —y). Therefore,

then it follows'151 that



We are left with terms that are in divergence form. If this was a periodic
system or if we had an intersting homogeneous measure to average with,
then these terms would have vanished after averaging. We want to record
here the kind of errors they introduce. Thus, for instance it is easy to see,
taking appropriate cut-off functions that
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and consequently, if

holds for all y then

also holds for all y, with the same dependence of ym ^ Cm as above. The
result about the pressure is a straightforward application of the result
regarding the behavior of structure functions under Calderon-Zygmund
operators. Before taking the average of IV we note that

with

we take the average of V and use a Holder inequality:

In view of the result above regarding the pressure we obtain

in the Navier-Stokes case and respectively



We are now ready to gather the bounds we obtained so far. We start with
the active scalar. In view of (14), (15) and (19) we have a bound

The two inequalities (20) and (21) will be the basis of our main results.
In order to simplify the exposition let us explain informally what they are
accomplishing. First of all terms of the type Ca_b(sjm(h)} with j = 2, 4 and
h = u or h = 0 arize from the nonlocal contributions. If scaling is assumed
then they are bounded by CJmsJm(h). But these terms appear at powers
l/jm, reflecting the fact that the nonlocal pieces in the balance equations
are linear. Therefore the contribution of the prefactors C1™ is bounded as
m -> oo. (We could have afforded more, namely any algebraic growth in m.)
Thus we use
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in the active scalar case. In the Navier-Stokes case we have an additional
divergence term coming from the pressure and obtain the bound

In the Navier-Stokes case we have, in view of (13), (17), (18)



It is interesting to note that the Navier-Stokes expression differs from the
active sclar expression by one additional term: m2,^2 in the prefactor of
s2m. The inequality (22) with E defined above is the main result of this sec-
tion. The bounds above can be viewed as bounds for the Dirichlet quotient
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for all m^2, with h = 0 or h = u. The degree of homogeneity in the
unknown h of both the right and left hand sides in (20) and ( 2 1 ) is 2m. The
right hand side involves s4m and s2m with homogeneity one in s2m and
homogeneity 1/2 in s4m. We shall see later that the left hand side can be
brought to a form that involves sjm(h) for any j in d = 2, and s6m(h) in d= 3
and s4m(h} in d=4.

Let us do away with the last term in (21) at the expense of half the
term on the left and write

In order to simplify the expressions E it is convenient to take p of the same
order of magnitude as L and assume that s(^f\v} ^ Cs^^v). Also we set

and use

which can be proven in both Navier-Stokes(15) and active scalar equations
provided we take

bounded (F= \\f\\L«,). We use also Young's inequality and obtain

and respectively



is the ratio of the 2m structure functions of the force and the basic
unknown.

Taking the time average of the local Sobolev inequality with ^ = ¥ we
obtain
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of the type

and respectively

where

is a generalized flatness and

where (// is a function, the constant C depends only on the dimension d and

7. FRACTIONAL STRUCTURE FUNCTIONS

We start with the local Sobolev inequality:



For arbitrary m > 1 and 0 ̂  r ̂  1 let us define fractional structure functions
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The usual structure function of order m is sm. i and clearly, if r ^ 1 we have
only the fraction r of the usual expression. It is perhaps useful to observe
that the function

is a Lmr(dt; L™oc.unif(dx}) seminorm and a nondecreasing function of each of
the arguments m and r.

The considerations above lead to bounds of ^2*OT;2/2» in terms of s4m. 1/2

and ^'2m; !• The expression E can be easily replaced (easily means by taking
the time average at the appropriate step in the derivation) by

for the active scalar and respectively

for the Navier-Stokes equation. In J=3, where 2* =6 we obtained thus

This is the main result of this section.

8. SCALING EXPONENTS

We will make assumptions regarding the nature of the functions sm. r
and deduce the relevant conclusions from the inequalities above. Let us
assume thus that

holds for



where we denoted by (j>2m. i the scaling exponents of the fractional structure
functions associated to the forcing term / We will evaluate (28) at the
bottom of the scaling range \y\~rf. As ?//L-»0 we deduce the necessary
condition
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where

is the Kolmogorov dissipation length. In view of the remark in the previous
section, if rj/L-»0 then, from ml^m2 and rl <r2 the convexity inequalities

follow. Also, it is easy to check directly using the Holder inequality that the
monotonicity inequalities

hold.
Both left and right hand sides of (27) are homogeneous of degree 2m in

the variable 6y0 respectively 6yu. We take the 1 /2m root of both sides and
use the scaling assumptions. We note that prefactors that are polynomials
in m become bounded by absolute constants after this operation. The
Reynolds number dependence will be expressed in terms of the Kolmogorov
dissipation length. We obtain, in both the Navier-Stokes case and the active
scalar one

From the convexity inequalities and the mild requirement that



9. INTERPRETATION

When one takes averages in space and time of nonlinear expressions,
the order in which the operations are performed is of consequence.

is always true for 0 < r < 1, but in general the two integrals are not equal.
On solutions of partial differential equations these integrals might however
scale asymptotically in the same way as functions of y. That would imply
that
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it follows that

If the scaling ranges depend on m but there is no Reynolds number
independent small scale cut-off then the same kind of inequality holds.
A popular belief is that the m — th structure function has a scaling range
that extends down to the scale qmir at which the local Reynolds number
based on that particular structure function is of order one. In that case

and the inequality becomes

while, in general, the convexity inequalities guarantee only

If the equality (30) would hold then (29) would become



holds with Os£am ; rsS 1. Then it follows from (34) that
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and this would be inconsistent with

One might argue that the equality assumption (30) seems reasonable
only if there is a uniformly smooth behavior in time. But more is true. If
we use both the monotonicity and convexity inequalities we get in general
that

In addition, from spatial interpolation we deduce that, if

and

then

holds with

In particular if (m, , m2, m3) = (2m, 4m, 6m) and ( r , , r2, r3) = (1, |, 5) then

Therefore (29) implies that

holds. In view of (33) it follows that



is true for active scalars and regular solutions of Navier-Stokes equations.
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